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ABSTRACT

We discuss the turbulent motion of fluid flow by using the renormalization
group to solve the stochastic field theory of the velocity field vj(?, t). An "anti-
velocity" field is introduced to enable us to give a Lagranzian density for the field
theory, and then this density is utilized in the definition of the generating
functional for velocity correlation functions. This generating functional contains a
stochasticity parameter, a, in such a fashion that when a +0 the fluid motion is
deterministic. This parameter plays the same role as J in the stochastic field
theory called quantum field theory. The renormalization group analysis is carried
through in detail for a mixing of the fluid which uniformly stirs all modes in wave
number and frequency. In such a situation we show that the energy spectrum
function E(k) behaves in three dimensions for large k as a constant and for small k
as k P where p Is a universal dynamical index dependent only on the number of
space dimensions. It is zero at D = 4, and in an expansion about D = &4 we find to

first order p=- 2{4-D)/9.
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L INTRODUCTION

Homogeneous turbulence represents an abstraction from the actual more
complex turbulent motion encountered in nature. Yet as a inathematical maodel,
often realized in practice to excellent accuracy, it has proven amenable to
extensive and profound ana]ysis.l Even in the idealization represented by
homogeneous turbulence the non-linearities in the Navier-Stokes equation has
remained a formidable barrier 1o the quaniitative znalysis of turbulent dynamics.
Since it is agreed that turbulence is the random motion of a velocity field, vj(;c', 1),
the non-linearities exhibit themselves in the coupling of nth order correlation
functions of the velocity to n+ 15! order correlations through the inertial term,
Vc;davj in the Navier-Stokes equation. The "closure® problemn of these velocity
cocrelation functions has remained a central dilficulty of the theory of tur-
bu!ence.z

This fcature of closure among different orders of correlation functions is a
common aspact of stochastic field theories with non-linearities in the governing
equations. In the quantum theory of fields as encountered in particle ph;-rsics3 and
. many body physicsn as well as in classical statistical problems such as phase
transitionss the equations among the correlation functions fail to close thus making
the theories essentially intractable to exact analytical solution.

In such a situation a large variety of zpproximation techniques have arisen,
many of them ore or less identical in the various subjects mentioned above though
they tend to carry dilierent names. One of the more elegant type of approximation
has been to resum the perturbation series in an expansion in the non-lincarity to
give cxact, non-lincar equations among the "renormzlized” correlation ium’:tion.s—9
Then thase equations are truncated and solved as well as possible.  The "direct

interaction” approximation is typical of such a procedure.
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This papsr treats the stochastic field theory of \-jh?, 1) by use of the
renormalization group.lo This technique 2llows one 2 derive exact constraints on
the allowed form of the nth ordzr velocity correlation functions and to exiract
exact statzments about their behavior in both the short distance (large wave
number) and longz distance (small wave number) regiines. The renormalization
group may not be familiar to all workers in the theor} of turbulence so a

1o In essence the

pedagogical introduction to it will be incluces below.
renor;nalizatiqn sroup notes that the parameters specifying the non-stochastic
theory, for example, the viscosity, v are replaced by functions of wave number
and frequency by the fluctuations in the stochastic thcory. One may define
renormalized parameters, say v, by evaluating thess functions at some standard
wave number, kN' Then requiring the physical conteni of the theory to be invariant
under changes in kN‘ which is arbitrary after all, gi'.'cs rise to constraints on the
allowed form of the correlation functions. '

An important example of these constraints is given by the consideration of

the energy spectrum funciion E{k) defined in D space 2nd one time dimension via

k.k .
1 r(D/DEL) $o. oD ikx_ >
51 21012 kD’] fﬁn- 3 )= Jd ke oj(x, t)vl(o, 0> ‘])

In a theory where the medium is uaiformly, though randomly, mixed in wave
number, the renormalization group predicts that for k+9, i.c. long wave length

turbulence

2 k .‘"'D’l’p
E{l) e v kl\' (_;\_a_) x constant . 7))



-4 FLRAMLAB-Pub-78/28-THY

where p is a universal numerical index which depends only on the nuinber of

ditnensions of space and not onwy or k!\' or the strensth of the stircing force. 1f we

" introduce the usual viscous energy dissipation paramneter

& - 2v | e G)
0
= vjka x (constant) , %)
then (2) becomes
213 3-Dyp
E(k) & ('iﬁ) x (constant) .
ko0 kp P\ K A o

Determining p exactly may be tantamount to solving the field theory exactly.

1 One of

Several technigques have been developed to evaluate It approxirnately.
these, which we shall explain in detail below, notes thatat D = %, p= 0 and tries an -
expansion in € = 4 - D. In first order of this expansion we will show 0= ~2e /9

which implies that et D = 3

EG) ~ k2P

. 6
. (6

The expansion in ¢ is surely asympiotic, though cxperience indicates it is very
accuraic for €= 1.

For large k the form of E{i) is given by the ronormatization group to be

&3 pa s o(=]
£00) @ ..k (constam + O =—= ) 7
ke kle3 kq -0 v
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oratD=3
E(k) ™ constant + D{1/x) - (8

These results indicate that the familiar Kolmegorov behavior

By « &350 ©)

does not hold precisely for any k when the medium is mixed as described.

The Kolmogorov spectrum s supposed to heold for a turbulent medium
predominately mixed at low wave numbazr, so it is not a surprise that it doesn't
apply here. In a subseguent paper we shall treat the more physical sitvation where
the medium is mixed in wave number space with the sirength () l)-l, where L
is a characteristic length for the mixing and X is some large power. Thls mixing
spectrum is the same as the ona treated here for k™ 0, but is cut off at large k; i.e.
in the inertial and dissipative regimes. So the resulis for k ~ 0 will be thz same,
and we will explore in detail the interial range. The uniform spectrum treated Herc
will then provide the most easy introduction to the use of thz renormalization
group as well as illuminating the character of the smzll & regime.

In the following we begin by a detailed specilication of the stochastic field
theory appropriate to the nen-stochastic Naevisr-5tokes eguation. Then the peortur-
bation secries for this {icld theory is &nalyzed; the dimensionless expansion
paramecter is, as usual, the Reynolds numbzr. The spacial role played by D = 4 will
emerge at this point.  Next we discuss the rencrmalization schoine for the
stochastic ficld theory and introduce the renorsazlization group. Alter extracting
the general statements about velocity correlation funciians which follow from the

renormalization group, we darive (2) and (7). A discussisn of results ends the paper.
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1. STOCHASTIC FIELD THEORY FOR TURBULENCE
We vant to discuss the stochastic behavior of ti:c velocity lield vj(;, 1) which

satisfies the Navier-Stokes equation

%, 1)
D D

- Z -+ l + - i
T = wW vj(i, 0-v (& t)V,_vj(;c, 1) - 5 Vjp(x, )+ fj(x, 1) (10

- rd - - ]
in the presernze of an external force f. As usual we will take an incompressible

fluid

Vj"j&: =0 an

which will aliow us to eliminate the pressure p. Now % satisfies (10) in the absence
of stachastic behavior, and wa want to formulate the stochastic ficld theory of vj
in such 2 way that (1) Qhen a certain "stochasticiiy parameter,” called a here,
tends to zero, (10} holds precisely, and {2).for any value of a, (10) holds in the mean.

This is accomplished in the following steps. Introduce a Lagrangian density,

& sich shat the stationarity of the action

J dedt .? (2

yields the eguations of motion above, To construct this Lagrange density we must
introduze i~ addition to v; an *anti-velocity™ ?j since the Navier-5tokes equation is

lin=ar in time <erivatives. We will then write for .9’

* g = %iv. . v,
2y '?‘v’ + vvl’ vjvgvj

- hi( %E(V)Vn . e; '_E\')Vl}vil VeVn * "g.\’dixing a3)
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where
(3 aa
Ada - A(ats) -(—3{) B , (14)
and
' 1
Aj!'(b) = Gji';,'z'v;v!. (15)

is 2 shorthand notation {or the operator indicated. z‘jl arises when we eliminate

3]
Vjvj = vj;j =0 by either a Lagrange multislier in (13) or by replacing Vj&"t) by

the pressure using V.v. = 0. Strictly speaking we should enforce the condition

- — — . - g .
Aj L(V)v" {x, t) and vj by E’LVE everywhere, This wonld significantly complicate the

notation and not be very helpful, so we'll use the abbreviated version shown
The external force term is contained in the mixing Lagrange density. We'll

take the external force to be a Gaussian random field with correlation function

<4606, 0> = 40-%,1-9) (t6) -

L 6,8
and %im& will ™

- D -+ —
Mixing = = 0 0] dUydvE (OPE-F, -1, G) (17)

For the greater part of this papsr we will discuss a stirring of the fluid which is

uniform in wave number and frequency space. 5o we tzke
- 2 D,»
M 1 = 5P st 18

The Lagrange densily reads
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v.h ¥V .

- -
.Sf'= v d v, + V¥ v. V v - 8 s

1t | A

“:*N

-5[(%nmvz+ Ajl(‘?} vn);;jl eV (19)

At this stage we are still dealing with non-stochastic behavior determined by
the Euler-Lagrange equations
& . & (20)

av. °
i j

A

<i
h
o

which are just {10} and a similar equation for ;j' she stochastic nature of the
‘process may be most compactly introduced by giving the generating functional

Zi nj, ﬁj ) for the velocity {and "anti-velociiy") time ordered correlation functions
- -»> — -+ — -+
<T(le(xly tl)-'-vjn(xn) tn)\'kl()'l! Tl)'“vkm(ymi Tm)) > * (2[)

Z is expressible as a functional integral

2l | = N 1 ov& 08Ty, G0 T & 60805, G, )

x,t »t
i k
x exp -1 [ Oxal L, B0 G 0l 0 A G RGN, @2

where N guarantees 2{0, 01 =1, The paramater a is the stochasticity variable
referccd to above. When a * 0, the only field conligurations which contribule to
r 4\ Lt ﬁj} are those for which the exponent in (22) is siationary

&L
dv., .~

W and - -_Hl . (24)
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which are the non-stochastic equations with external saurces 1. and Ej' Since Zlni,
T}i }is unchanged when we change the integration variables Yi and ;j to vi* ﬁvj and

;j + GVJ. respactively, we find by expanding in 6vi and 67j

=< 5= -n. and<-d—~—>=- {24}
for any a. The mean, expressed here by <>, signifies

-3 -
-vﬁ5(V-vi)5(V,_v,_) {25)

- — — l L —_
<-'\(Vj,vj)> = N fdvjdvjA(vj,vj)c-xpE ;f dedt[.Q/»f njvjm} i

fo‘r any functional of vj and ;j' Eventually we are interested in "lj = Hj = 0 for the
correlation functions of vi and ;j alone.

The stochasticity parameter deserves a word of comment. It plays the same
role here as does Planck's constant ¥ in quantuin theory. We understand this as
follows: when K +0, thare are no quantum fluctuations in the system, it is purély
classical and deterministic, that is, non-stochastic. In the operator formulation of
classical statistical dynamics as discussed in Reference 6, the commutation relations

of \ri and ;j would be

lvi(I, 0,75, 0) = a £&-p 5 (26)

which again shows the role of a. In quantum theary a is replaced by Fin (25). The,
dimensions of a, as is also true of J§ are those of the action {12). Without further
comment we will most often simply sot a= 1 and do our dimznsional analysis in
those units. Il onc keeps a throughout, it will count the closed laops appearing in thg
graphical form of the perturbation theory in Reynolds' number to be doveloped

bejow.
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A uscful expression for the Reynolds' number, which we will call g, may be

extracted from the Lagrange density (19). g is given as

B = oh- ) (27)

where v is the "size" of the velocity vj(;, t) and k,, is some standard (leng,th)"l or

N
wave number. In the situation where the turbulent medium has come to equilibrium
the encrgy input, 1-27 2, is essentially balancing the viscous dissipation,uszv‘_\F, 50

2 _ :
I+ . (28)

2
vk N

Y

From the dimensional analysis of the action, or consideration of the commutation

relation (26) we conclude

vw = kN a s (29)

teading to
b2
vzXk ? /3 (30)
and
D-4
g = jﬁ ky ¢ /T . (31)
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It is important to note that g becemnss inde; endent ol ky at D=4, tiat is at
four space and one time dimension.  Whenaver the dimcasionlzss parameter
characterizing the non-lincarities in a stochastic lizld theory becomes Independent
of scale, the behavicr of the correlation functions becomes quite siraple in either the
large k or small k linits. Furthcrmore at that space dimeonsisn, the series expansion
of correlation functions shows logarithrnic divergeaces and requires infinite
renormalizations as occurs in quantum electro:{ynamics.3 This fact, on the face of
it would seem to have no particular relevance to the real world at D = 3 which is our
concern. However the scale invariance of the D = 4 {ield theory renders it, in many
ways, much more tractable than thcories with D <%, Since some form of
renormalization will be nccessary when we expzand in g, it appears convcﬁien: to
choose that renormalization procedure so as to rendar the D = § theory finite. The
theory at D =3 is always finite and needs only finite renormalizations. Having
chosen this route, we will {ind i1 both possible and convenient to expand certain
quantities in the D = 3 theory about their value at D = 4. An example of this is the
energy spectrum index p discussed in the Introduction. p =0 at D =& and a series In
powers of (4 - D) scams sensible,

Cilearly the precise meathod of renormalization must not alfect the physical
results we dzrive from our Lagrange density. ladeed it is thz invocation of the
renormealization group which will be cruciz! in this by telling us what constr:.\iﬁts on
the correlation functions must ba mat to guzranice indzpendance of the renormali-

zaiion procedure.
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L. PERTURBDATION THEORY AND RENORMALIZATION
FOR VELOCITY CORRELATION FUNCTIONS
In this scction we want to give the rules for calculating the velocity
correlation functions {21} by expan-ion of Zj nj, ?‘.j 1in powers of y {or of g}. To

this end it proves to be useful 1o resedle the velocity as

Xjfx 1) =2v(x, O,

and

Nlo'*

Ej&, 1) .65 0 ) 32

Then the Lagrange density becornes
. J o= 5 x. v .V -

- = Yo - -
- hxjajlx,_ e I(Ajn(V)V£+ bj ﬁ(V)Vn)xi ”9.*,, . (33)

From this Land the generating functional (25) we can derive rules for a graphical

expression of the terms in the expansion in Y, of the corrclation function
(n,m)

-+ -+ >
By oosd_sfyeend (kl, wl""kn'mn’ 9 9!,...qm, th) in wave number, frequency space
ot dm i

n L m + +
si) u_-fn n)ét)(Ll:.- q. ng'm.). . K, W, , )
(jzl e ™ j=1 j 1};1 £ byeed ol el P17 Tm

: D D D ,. D
= Jd x;dt ..d"x dt oy dT .y dT X

diied - - > .
o [ O R e R R TR T A FREERL P A nm"m)]

-» - - - - -
<T{xil(xl, 11)...xi (xn, tn)):j](_\'l,'! l)...xjm(y Tm)) > . (34)

m?’
n
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These rules are as [ollows:

1. There are twe kinds of 2nd order correlation functions in zerozth order in

T()
'i:l r .
a) JdPxdr ek X4 t'<T()(j(:<, )x,(2, 0)>
= DY v
'D(.}z{’:, w) = B L—s = - ,  (35)
) I lw s v k- )iw - v_Kk° - €)
(4] Q
and
D, -ik-xeict > = - 0,
b) fd xdt 7" <i'(',(j(x, 1}7,(0, 0))> = Fja(k, w);
02 >, 1 -
Fok,a) = 8 K——a—— (e
e e -iw +v°-|:2 +E
where
> 2
A.] £ = sz-kjkgfk , Gn

and the limit e + 0% is understood after all calculations are done. This assures
proper retardation. Thesz zeroeth order correlation functions {often called
propagators) are represuated as in Figure J. A dotted line represents a -)E while a
solid line represents a2y - The arrows on the line are nccessary bacause of the
structure of the XXX terin in A%

2. There is one kind of vertex where two solid lines join to 2 dotted line.
This fusion vartex js assoziated with the factar given in Figure 2.

3. At any givenorder nf‘(o draw zll topologically distinct graphs constructed

oui of Do, I-‘o, and tive vertex in Figure 2.
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. Integrate j'qud.u around cach closed loop.

5. At cach vertex conserve'a and w.

6. With each grapoh associate a weight 1 except for closed loops containing two

D Lo lines: these have weight J2. See Figure 4.

7. Some graphs will vanish because of the retardation prescription in jtem 1.
For example, the graph in Figure 3 is zero.

These rules may also be derived by considering the averages <x...X> directly
at n, =ﬁj = 0 as in (25) and noting that each term in the expansion in Y is of the
form of powers of x and X integrated with exp -%(x. x} M (X’) The inverse of
the matsix M 1 is composed precisely of the two paint corre!anons D0 and F when -
é;pressed in':;,w space.

The lowest non-vanishing corrections to DO, FO and the vertex are given ia

Figures %, 5, and 6. Indicated also are the counting factors to be associated with

cach graph
In doing the perturbation theory we will modify the “bare" carrelation
2,0) ,
function D! i(-(,m) into the {ull velocity correlation function G (km YoV )

which is given as a power series in Yo Similarly F?!_ will becorne the full

“ ”tk, & Yy Vy)- Each of these must be proportional to -Aj () because of the

trensverse nature of the velocity field, so it is useful to dt.me._/; (2, )(-\ W YV )

and .;Cr’o‘l’])(x ""’To’“o) by

Ggio’&,m VYoV * %ztﬁfﬂz'o)&z,w Yo V) (38)
and

i wrgv) = A TN Ly vy (3%
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- Al - Y
When Yo © 0 we haveffﬂg’l -1 + u°k2 and the obvious expression §orqf3'°) 1

i
,;{2,0)

-4
c,
"o

When we have calculated and'.'y/’;"” 10 as high an ordar of o 35 WC
desire, the u and %2 behavior will be very complicated,  We may continue to
parametrize that behavior by Vo and Yo ©F we may choose to renormalize the
theory by defining effective {or renormalized) parameters v and y in secme manner.
For D < & all the integrals appzaring in the serics in Y, 2re finite, cxcept possibly
at ""i‘T(i = 0 sirnultanzously, and we are not _reauired to renormalize in this fashion.
At D =4 every integral in Figures &, 5, and 6 is Jogarithrnically divergent and we
must find a way to define the theory there.

The central exercise in this paper is to explore the conseguences of
renormalizing and requiring that the physical results of thz theory as embodied in
the G(n,m) are jndependent of how this procedure is carried out. As we will see
this path will allow us to derive constrainis on thz G(n’m). If we were able to solve
the theory exactly, these constraints must bz identities. In any approximation

scheme they will limit our attention to forrns of G(n’".‘)

consistent with the general
structure of the theory.
The actual method we will choose for defining our renormalized -quantities

{n,m)

will guarantee that the correlation functions G are finite at D =4 when
expressed in terms of thoss renormalized parameters.  This prescription will be
convenient and practical vhen we come to exirazt explicit conszquzences of the
renormalization group.

We adopt the following multiplicative renarmalization procedure: Rescale

iti~e ~ N e [l ) Toeatoee 4 -
the quantitizs ‘(Oi' xoj' Vo and y o by dimznsioniess factoes
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%
xoiﬁ. ) = Z xj(x. t)
Tt = 2%.0G, 0
Xoj*r V= Xy |
-1
vo = Z\? \Y
o =l
Yo" 2y Y .

{40)

(41}

(42)

(%3)

.. ) 2
Determine these factors by requiring that the renormahzeds/ﬂ"mﬁz,u,v,ylr_.; N}

satisfy

i
!
—

"saa‘?(l'!)(azsws Vr MN)-
k-0

msz

2(1, 0 o
AL AR

oK 12’2:0
© Wy

’ Q). ~2 -
_aaal-qu/(z’ )(k 1U:\J!T!L9N) !

y (44)
s (45)
. {45)

. . . -
Noting that the vertex has the gencral expression A&j(k).;sn(qlhﬂ. (qz',ll'. {k, w3

51’ Wy fq’z, wy) with the lowest order term being

-i YO

r

int

D o -+ + .
rjng(kJ (I’; QII wl! q2$ mz) =TT 6Jnk£ + 6]‘2}("] ) (1;7}

D+ !
2(2 ‘E)—z'—'

. . *
we requirc of the renormalized Ijn L(r\', Qs Az Va s “",N)
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Kilin {0 99 v v,y _ -y N33

k2 praza2, oSt

Since @2'0))’1; Z@’?’m)'l, (#;4) will determine Z and by construction
Z=14 0(702). Then (45) determines Zv , and (46), Z. Finally Z comes from (48).

The indicated procedure js therefore to ca[cu!ate.qﬂoz’m,.qf{ol’”, andr ;Jng, to
some order in Yo Dsatermine the Z—{actors using these conditions, and then they in
turn dafine the rencrmalized correlation functions. The nccessity to deline only
four renormalized quantities comes from the actuzl structure of the Lagrange
density whare only four terms in fields apozar. It takes an enormous effort to
demonstrate that the four conditions wa have given are indeed just what onz needs
to define a finite theory at D = 4. (For the example of quantum electredynamics,
sce Refcrence 3, Chapter 19.) The author has not carried this out ia detail but is
confident it can be done.

We close this section with an importent observation on the ficld renornzli-
zation factors Z and Z. Because of the momenium dependence of the vertex

{Figure 2) or equivalently the derivatives in the non-linear term in_gfthe functions
G?’O))-l and E//E)[’”)_l can be written

H - -
(g:,l ))-l = -lw+ kz(vo - Eo(Kz, w) {49
and

fﬁz-“‘r' . [am'r:?(vo-ao(tz,-_.m;-u-:f:?(uo-:o‘(".{-’,mn; )
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Since Z, Z are evaluated by taking derivatives with respeet tow and s2in3 w = Wy
and l:o =0, z =Z = | unless Z;) or U, is singular. In any order of porturbation theory
they are regular away from the point £2. 0 =W, 50 it secrns quite likely that
Z=Z=1 identically. This is_ a8 wuseful algebrzic simplicity of the given
renormalization scheme. Furthermore, since the mo.mentum structure of the
vertex s diciated by the solenoidal nature of vj and Vj’ this renormalization scheme
takes maximurm advantage of that constraint. One must be cautious, however, not
to. suppose the limnit W +0 is jnnocent. Most of the expressions we write in
perturbation theory are singular there (2n infrared or long distance singularity)
since Do and Fo are singular there. Indeed, the utility of mN £ 0 will come when we

vary it in the vicinity of wN: 0 to explore the infrared structure of turbulence

which is incompletely revealed at any finite order of Yo
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V. THE RENORAIALIZATION GROUP
We begin this section with some useful dimznsisna! analysis. 1{ we choose
units so a =1, the action {12} is dirncnsionless. Let us assign dimensions of

-1 . G -1 .
k ! = inverse wave number to position, X, ang to time, t. Then from gwe

learn
LZ) = kPo , (51)
i) = 1 D/2, 112 , 52)
(X1 = /%P2 , (53)
(vl = wk? , (54)
.and
) = 2% ) (55)

where [] means dimension of enclosed quantity. From this we learn that using the
ingredients of perturbation theory, that is, vy, v, and SING thz only dimensionless

paramneter is

Db
4
E = ""E)E'i “N ’ (56)
v ———
&
I we introduce kN as
Wy = V.2 {57)
N PN !
then
D-4

g = v 2"".\:—? , (58)
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which is just the Reynalds' number we defined above.

1 - . . n
We may return to the actual velocity correlation functions, called 0( »)

(n,m)

from tha G given above by

R i n-m
¢(n’m)(ki: @p Vo Bra ) = (%) G(n’-m)mi'*" P 8wy G9)
n-m
_fy {rym)p "
. (7) G, M wn v, YY) (50)

where we have used Z=Z=1 in (60). ({Tensor indices arising from the vector

{n,m)

nature of Vj or ¥ are suppressed in this section. } Now Go is the full xj, 'i'i

correlation function calculated to all orders in Yor On tiiz left hand side we have

{n,m}

° is unaltered, since

the renarmalized velocity correlation. If we change U G

it never heard of Wy 35 1t Was evaluated directly frem the szries in Y, However,

m-n Q(n,m)

both y and v must change so that vy is unchanged. This means

d G(n,m) >

mN dl’.\)-q O (ki;,’i’ voi Yo) = o N (51)
[}

Vor Yo fixed
D2 4D TP

3 & TR n,m),. .
[“‘N 3_? + Alg) % + B{g)v W][(gv W p ) ¢h’m)(+:':,u‘.\-,gu N)} =0,(62)

M) = wy ﬁ- 8 (63)
N

VorVo fixed

and
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v Bm; v . (64)
fixad
' VorTo

This leads to
[w Na—; + A2 + B -2 + Cn'm(g)] O™ v, g =0 (63)
wvhere
Cpn® = o [1-D g2 807 (66)

Equation (32) is the renormalization group equation.

To cast this equation into a useful form we want to remove the derivative
+ I .
from wy to the wave rwmbers ki' To do this first replace g by sz using

z
wy = ka and ncte

' 2

)
=, (67)
I*N

0
: c. (@
.2 2 [ ? n,m' {n,m);* 2y .
[LN a_k 5 +—-?—)—I_Bg ig *l_b-’_j-ﬂ\g V35 -l'T—_‘B@} o (kimi,\l,g,kN)-U.(as)
Next use the dimensional analysis above to learn

[o(n,m)] - kI’Zt(!-n) +m-n_ 1-2m , {(69)

$0 We [pay write

@(n,m)(;;'wl 3y

- - T -
AN vl 2m(kN2)I {n+3m) + DJ2{1-n)

(70)

Z T
.

Y4
g o
n,m . sz
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where 9 is a dimensionless function. This allows us to express
?

o(n,m)(/:_: Ky 0p Y, 8, "NzJ - r'D,FZ(I—n) + {m-n)/2 ‘;,(r»,m)(r(j

2
» Wi 9, 8, (kN Yy, on
This immediately implies
-
E "E'E' Q{n’m)(r/z;_ ki, UJil\J + By sz)

=(D(I-n)+m-n e vl oy 2 _3_) ¢(n,m}(,€+ 2 .o , G2)

]
7 AT 7] o p Vs B ky
aky

and

3% «@ 3 g v 5 ~Yon®] CE B sk < 0, 03

with

olg) - 74)

(g) = (m-n)(?—D)q+ 20(1-“) + I:% (.l . B(g)lz + A(g)fg} (75)

Yn,n

Now we have an equation for the variation of the velocity correlation functions

with wave nuinber. The solution of {73) is

2) -

¢(n,m)(/§-}:i‘ WPV 8 RN = Q(n’m)(k-;

rwg ;(-Iog £), E(-!og £), sz) x
0 -
x exp | duTn,m(g(u)) , (76)

-log 1,
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where the "running” Reynolds’ nuinber g(4) and "running™ viscosity satisly

N ) , )
and
W) T du T T T-BEOD '

with boundary conditions E(O) = 2y ¥{0) = v.

Ve car; usc this result to study the t: behavior of the velecity correlations if
we are able to deal with the ordinary differentiz! equations (77) and (78). Of these,
the equation for g(u), the effective Reynolds number is crucizl. If, for example, for
g +0, gl-log £) +small number, then (73) telis us that we may determine dn,m) by

. - - - >
a perturbation serics in the effective Revnolds' number for smalt ki'

Suppose we calculate afg) in a perturbation ssries in g and discover that a{g)

has azeroatg = -9 with positive slope
alp) = qG-g), ¢ >0 . (79}
Then for glu) = 3 we may solve (77)
-g(u) =g+ G- g,l)t:'c'lu ' (30)
or
- |
Bl-log£) = g, +(g-g))¢ . {s1)

When £ 0, gl-log £ gy» regardless of the valuz of 3(C) = g. So the low wave

number o long distence behavior of turbulence is governed by the zeoroes af ala)

with positive slopa. Siailarly, zerons of of) with negative slops govern the Jarge

key physical ebjocts, not the values of g, the renarmalized Reynolds' number, or the

value of 8o+ 1€ nun-stochastic or bure Reynolds” number.
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1 we knew afg) perfectly, we would know a great deal indced about the
velocity correlation functions. Probably knowing g} is cquivzlent to solving the
full theory; at that point the renormalization group is merely a consistency check
on the solution. However, if we know ofg) cven in parturbation theory in g and the
relevant zeroes g, occur at small g, then we have a consistent procedure for
determining the behavior of the velocity correlations.

We can now determine the functions A{z) and B(g) in perturbation theory by
calculating the graphs in Figures 5 and 6 and from the renormalization conditions in
the previous section evaluating Z  and Z\,. The calculation is laborious and follows

directly irom the graphical rules. We find at D = &, which will be enough for cur

purposes
: 2
3 1
NNE; log Zvl = -—l—g(&) ’ (82}
D=4
and
‘ 2
=2 2[5
To find Alg) we note
D-4/4
B = BN 4 (34)
v
z Y
- Y 0 . D-4/s
= D3 T Dl YN ’ - 8%
(Zv) v,

0

— loz ZT -t --u; log 2, ] ’ (g6)
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so cvaluating the term in braces at D = § we have for ag)

2

Alg) = -%g+§%g(‘qgﬁ) ; e=4D . (87)

I ¢is small we will findg </€ so neglect of higher powers of ¢ or g is accurate in

(87). For B(g) we have
\2
D Y 33)
B - 16(".11) ’ ¢

At this stage of approximation a(g) has two zeroes

g =0 gg l = - -E ; negative for D <% , {29)
' ¢ 21 .
and
E_Z =3 /g' '%(Ezl = :ff H positive for D <§ . {90)
4n 3 g,

The zero of alg) at g = 0 with negative slopz is almost a "kinematic” feature of
the dimensional analysis of the perturbation series in ¥, (or g). It means that for

large wave number the cffective Reynolds number is zero. More accurately, as

[+ = we find
gz © » 2~ ¥ )

with X a constant which may be found Irom integrating (77), and the effective

viscosity
vilogg) = g - (92)

At large wave number the non-lincarity is cflectively suppressed.  To

Jn,m)

detorinine the behavior of the we raust take into account the poviers of g

which premnudtiply it. We'll do that below,
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The zerc of ufg) at g = 82 with positive slope is a loss obvious feature of the
thecry. As £+ 0 we explore the long wave length structure of O(n'm)V-;" l:i,...).

There gl=~log © = g, and

;(-log £ = v t/ ‘“5‘82’ . (93)

In the next section we will investigate the consequences of these zeroes in

a@.

V. IMPLICATIONS OF THE ZEROQES IN ofp)
In this saction wa will explore the consequences for the large and small wave
nunber behavior of the velocity correlation functions e(n,m) with special attention

to the 2nd order correlation 0(2,0)

. First we study the zero with pasl‘tive slope at
E=8§, Inan expansion zbout D = 4 we learned above that g,, or s‘.rictl.y speaking
the correst expansion parameter for all of our series gzﬂm, is small. Here we don't
assum:e it is small, so its value will be calculated by othar means. Instead we
imagine for now that the renormalized Reynolds’ number is precisely g5 The results
we derive this way will be approached 2s limiting values as ii" 0.

When g = g, of course n(gz) =0 and :z(—log E) remains fixed at g.- This is the
origin of the mame infrared stable point for g,. Then we have for ;(—lag £) the
expressicn (93} exactly. From the solution (76) of the renormalization group

cqaatian it fallows that

(r,m), - 2 n,m),»
A Li,u it W 8o kN ) = o( m (Ki,m i V& ) &g kN

[(m-n)2-D) + 2D(1-n) )% » (m-n)/(l-Bz)(l + BZIZ)
x 4 ‘ . (94)
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with B, = B(gz). All the eflects of the interaction are Yozated in the By dependznce
of the ¢ (or i’;j) depzndznce The reinataing powers of § dipzndence are strictly from
dirnensional analysis. Using the dimensional analysis result for ﬁ("’m) shown in (70)

we imay write

2 1-2 2, 12-0-3m + D{1-n)] 13
¢(n'm)(iﬂf~°p k, kj’v’gZ’ k[\‘ ) v m(kN )! n=3m (1-n)] %

= x
K2 | % (fm-nX2-D) + 2D{1-n)] + 1/(1-B,) (m-n){14B,/2) + 1-2m }
x 3 x
Kne
o, B . 2} 1/1-8,
2,8 N {95)
an w "k tv sz k2 ¥ 82 ’

where we have singled out any cne of the frequencies and called it w and any one of

the wave numbers and called its length k. Fn m is a dimensionless function of its
3

argumaents; tensor indices are still suppressad. .

Fornz=2,m=0 {95)gives us a result for

2,0 2 >y {2,00, @ 2
o(J’!) (U,i:: WV szy ‘\N ) = %1{‘) é )‘.J, k 'V, 82, kN ) {95)
which reads
2\ 1/1-B
2\ -2/1-B k 2
(2,0}, 122 2y _ .. DIk 2. I *N
o' (Lh& 1V gz, kl\' ) = VnN ” n F _v__k 5 k2 ’gz . (97)
N N
We can use this resuit in the definition of E(x), Equatinn {1), to learn
D2 .

i = 00207 D e L (2,0) 22 2 98
B = Seszar— K 10 0, kG v gy k) (98}

-1/1-n
. gglln);/n_;”f kD-lv?kN-D-Z(__k_;_) 2 1 dur(s, z,) . (39)

N
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Write 1A1-B,) = 1 + B,A1 - B): and we have

n/2 k.\ 3-D+
_{D-2m 4 2 (!'_\_) I 1
Ek) = RO vkl o JdxFlx, g} (100)
where
- ~ 2¢
p = 2B,/(1-B;) = - 5 s (1o1)
in an expansion about D = 4. This is the result quoted in the intreduction.
To find the behavior of Q(n,m) in the k » wregime, it is convenient to extract

the factors of Yn—m

G(n'm). This feads to

D/4{2-n-m)
4,,(s't,m)&i' wirv 1 8, sz) i Yn-m(k2} (ka)l-(Bmf,.ﬂ/Z
F '_ 2 E! £ ~ef?
X Thm m'ka’k ’g(kN) | )

42,0

using the same analysis as before. So for
o 202 k2 o o2 2ete] ky~€/2
s WV, 8, N =YV 3 » S(L,—)
v K N
and
‘ D/2 D-3 -c/2
(D-1)25 2k = Ky €
Eld = oy ¥y S aF (*v-%(lz;) ) '
Since l-:(x,g) = fo(x) + fl(x)gz + ...y we have

E(k) ~ kD—J.(CO + clk-‘ )

k+w

andatD =3

in (59} and study thz renormalization group equation for

{io2)

{(103)

(10¢)

(105)
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<
E{k) v Co* et {1035}

jr o

with Cq» €, Some constants. Thes2 constants and the funclion-F are calculable in
princip!e using periurbation thzory to evaluate G{z'g). Furthermore, perturbation
theory is accurate as k + © because the effective Reynolds' number bzhaves as
ke le,

The spectrem function E(k) is very strongly linked to the behavior of r{%), the

fourier transform of the mixing function in {18). From Novikov® we see that ép,

the dissipative energy loss

& = JdPk1) (107)

22 for large k, then A >Df2 for g to exist. Cur example of

30 if l‘(k) s’k_
rk) = constant which has bsen treated a2t lenzth gives infinite & because it
continually pumps enerzy in at every wavenumber uniformly. The connection
between E(k) and (&) for large k is also direct:

E() ~ kD21 . (108)

k+m
In a subsequent paper we shall study in detail the mixing force with correlation
™ 2, 2 -
M = {0+ k° /) » A >D/2 (109

which will give linite E:ﬂ and a possidle regime whare the Kolincgorov spectrum is.
correct. The k +0 bzhavior of (100) will not be afi=cicd by this change of fercing
function,

i for some reason we were interested in turbileat motion at D = 4, we could

{n,m}

use the renormalization group to cvaluate tne k + 2 tunit of ¢ but we loose the
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aBiiity to study the k * = regime since af3z) = t.tlg3 + 0(35), @, >0 for D=§.

D-3-p D-3
o k-

Equation (100} for the k * 0 limit of E(k) is changed Irom k t x(log-

arithms of k!kN).

VI, SUMMARY AND DISCUSSION

We have analyzed in this paper the stochastic field theory relevant to
turbulent motion of a fluid using the renormalization group to provide a non-
perturbative tool for studying the effect of the non-lincarity in the Navier-5tokes
equation. We found it possible te cast the stochastic field theory of the velocity
field, vj(-;, t), into a familiar functional integral form by iniroducing zn "anti”
velocity field, Vj(;, 1), and a stochasticity parameter, 2, measuring the deviation
{from d=terministic behavior of tha fluid. We did not discuss the stochasticity
patameter at any length in this work, but it seems quite plausidle that it
determines the presence and importance of turbulence in fluid motion, Certainly
the Reynolds' number which governs the importan:e of the non-linear, intertial
terms is significant, however, if a +0, then no fluctuations, i.e. no turbulent
motions, are present.

From the generating functional for velocity correlation functions we derived
a periurbation theory in the Reynolds' number for those correlation functions, and
used the renormalization group to provide a summation technique for that
perturbzation thzory. This enabled us to {ind the large and smeall wave nurnber
bebavior of the many paint velocity correlation functions. Particular interest has
been focused on the two point velocity correlation <Vj(':’ t)"'!.(;TP' and we
exhibited the behavior of it in some detail, Indeed we Iound that for the theory
with uniform mixing in wave number ang frequency space that the enzrgy spostrum
function E(&) commonly delined in turbulence theary bohaves, in three space
dimensions, as a constant for large k {sce the cormmonts after Eq. (167)) and as K P

with p a snall, negative nunber for smafl k. I an cexpansion about D = 4
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dimeonsions, explained i the text, we jound p = -2(4-D}/9, 50 p=-2/9in three
dirnznsians.
A key issue in the theory as presontzd hare is the nature of the driving force

for turbulence. It enters the Lagrangian density as a term

!

4 = .= - D + -
"[Mixing(vj’ vp) = - 1"'j(—" Nfd )’dfrﬂ(! =¥ t- Ty ly, )

when the external force in the Navier-Stokes equaiion is taken 1o be a Gaussian

random ficld with zero mean and

d#mtkém0$>= Lot .

In this paper we studied the forcing function

%ﬁﬁ)=$%éﬂp@ﬁﬂ
partly from the point of view of sitnplicity; partly because it seems like a useful
point to begin the renormalization group analysis of turbulent motion. Another
interesting forcing function would b2 one which turned on at some time o ad
turned off at some time ty. Tha study of the correlaticn functions at large t > 1
would illuininate the issues involved in thz dzcay of turbulence. This is likely to be
a more prectical question thaa the onzs studizd here.

Several future projects are suyjzgesied by the techniques developad here:
L. Use the renormalization group to study the {requency dzpzndence of the velocity
correlation functions.  This is straightlorvard using the dimensiona! analysis and
rendrin:lication group equatioas discusiod adove. 2. Usce the techniques davelopad
ix high enzcray p!wsi.'.s” to derive the furcitons ¢ ani near the infrared

d n,rm nytn

stable zeross af alzg). This provides one with the remaiaing available information o3
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the velocity corrzlation funciions. 3. There is one index, which we called ¢, which
determines thz k =+ 0 behavior of all velocity correlation functions. We studied it in
an cxpansian about D = & space dimensians and to first order {ound p= - 2(4 -T)/9
Such indices may be studied by the equivalent of high temperature expansions as
employed in solid state physics. :E‘hese expansions are straightlorward in concept
albeit tedious in practice. They arc usually remarkably accurate. 4. Finally some
attention should be paild to the possibility of eXperiinentally detérmining a value for
the stochasticity parameter a which will enter in a non-trivial fashion intq the
correlation functions. Several of these projects are now In progress and will be

reported on in {uture articles.
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Fig. 2:

Fig. 3:
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FIGURE CAPTIONS

The two point velozity correlztisn {unctions {propagators) in
the abscnce of non-linearities. These are used in constructing
the perturbation series in Reynolds' number.
b )= 6 ki il

1L X A
The fusion veriex for the non-lincarity in the Navier-Stokes
equation.
An example of a perturbation thoory graph which is zero
because of the retardation in th2 funciion FC in Figure 1.
The lowest order terms in the Reynoalds' number expansion of
the velocity-velocity carrelation funciion.
The lowest ordsr terms in the Reynolds’ number expansian of
the velozity—~anti-veloazity correlation function.
The lowzst ordar terms iIn the Reynolds' number expansion of

the fusion vertex.



Substitution for paragraph at bottom of page 18:

At this stage an aside is in order. By looking at the time dependence
of the decay of homogeheous, isotropic turbulence in the final stages of
decay one can learn directly about I‘M(k2 = 0). There are two competing
rhypotheses about the behavior of Iim“”‘ One is given by Batcheior,“ Section
2.4, where he argues that the analyticity of the velocity correlation function

at k = 0 requires
LD K2 (75)

near k% = 0. This has been criticized in detail by Saffrnann’ who argues
instead that the analyticity assumption is more properly made e;;;out the
vorticity correlation function. Then one has I‘M(O) finite and, furthermore,
an invariant of the motion. An additional argument in favor of Saffman's
conjecture is thatlr I‘M(O) £0 would imply, for long times into the decay
period when the degrees of freedom of the fluid had time to come to
equilibrium after whatever mixing had occurred, that the energy spectrum
E(k) behaves as kP! which one expects from equipartition. It is important
to note that there is a difference between E(k, t) in non-stationary
turbulence and E{k) in the stationary case. It is E(k, t) which for long times

after the mixing behaves at k+ 0 as kD1

when I‘M(O};EO. E(k) has an
additional factor of k™2 and behaves as E(k) +kP-3 when I'M(O);ED. For
generality, however, it is easy enough to consider a behavior like (75). Then

N=1atD=3,andg(u) += asu+ = or £+ 0.

Add to references

? P.G. Saffman, J. Fluid. Mech. 27, 581 {1967).




possible disagreement with that. The issue, then, is the behévior in the
intermediate regime where k is large compared to 0 or ko’ but still outside
the deep dissipation regime. Here the interpolating formulae derived in
Section V of this paper are the tool to explore this region.

As to the behavior of g changing as R0 changes, I cannot agree. I
recommend the referee explore the field theory of a scalar field with ,\ocp 4
coupling in D dimensions. The nature of perturbation theory in J\O changes
at D = 4, regardless of the size of AO. For D < 4 two phases of the theory
are possible. One is connected to perturbation theory and has a dissipation
region where as k> =, A

0. The other has A @ as

effective > effective ~

k+ <. For D > 4 only one phase exists. The presence of two phases is not
dependent on the size of A o Tr:e turbulence problem is much ff}e same.
-Here, however, we are fortunate in having a physical boundary condition to
choose the appropriate phase for D < 4. That boundary condition is the
‘existence of a dissipation region where vV 2vj dominates v, ij and the
effective Reynolds_number goes to zero.

(2) On rereading the paragraph beginning on the bottom of p. 18 I can
see how it should be rewritten for clarity. I enclose an altered paragraph to
address that.

I think this should make it clear that my preference for I'M(O) £0has a
sound physical basis.

One last comment which pertains to the referee'’s statement about E(k)
decreasing as [y,(k). For very large k, i.e. in the deep dissipation region
that is what physically one would expect some transport by *7-V vj has
become unimportant. For large k but still less than n-l there is a
combination of effects consisting of energy transport by v -ij and
decreased input due to the fall off of FM' It seems to me possible, though

not yet demonstrated that a balance yielding a Kolmogorov spectrum could

arise, though I do not expect it in a neat analytic sense.



Reply to the Referee on "The Behavior
of Homogeneous Turbulence Mixed at Long Wavelengths"

I appreciate the long and careful review given by the referee of my
paper. I will try to address the two important points he raises: (1) a
question about the behavior of the effective coupling as one varies the bare
Reynolds number, and (2) the phrasing on p. 17-19 about I4(0).

(1) The renormalized Reynolds number, g, is an infinite series in 8o’
the bare or unrenormalized Reynolds number. If the function A(g) has a zero
with positive slope at g =g, anda zerol with negative slope at g = 0; e.g.

A(g)=—%g+ag3 , a> 0, .

?
as in the theory of turbulence, then one can solve for the g(go) relation by
using the boundary condition that when g o> 0 g 0. The relation, good at

the same level as A(g), is

2
2 8o

8 = —5 3

From this one sees that as the bare Reynolds number g ranges over
0< 8, < =, § ranges from zero only up to g;. The effective coupling g
reflects this behavior. As k+ =, if g+ 0 for any 84 it goes to zero for
every g .

I believe there is an important physical point to be made, and perhaps
that is what the r'eferee is driving at. k- = literally means leaving the

inertial range and moving into the deep dissipation range where k >> n_l =

{c/ \J3)”‘. In that range, whatever the bare Reynolds number for D <4, \;Vzvj

will dominate the inertial term. Perhaps I am wrong, but 1 don't see a



In first paragraph on p. 21 change first sentence to:

For the circumstances mentioned above I:“(kz) « k2 for small k, N = |, and
we see that E;(u) is zero at both ends of the wave number spectrum for

D=3.



